
normal [LE,RO]1 [LO] [RE] [LE,RO],

pyCLARA

Kais Siala
Waleed Sattar Khan

Mohammad Youssef Mahfouz

Version 1.0.0

Jul 09, 2021

Contents

1 User manual 1
1.1 Installation . 1
1.2 config.py . 2

1.2.1 Main configuration function . 2
1.2.2 User preferences . 3
1.2.3 Paths . 5

1.3 runme.py . 6
1.4 Recommended input sources . 6

1.4.1 Shapefile of transmission lines . 6
1.4.2 Shapefile of the region of interest (useful for lines clustering) 7
1.4.3 High resolution rasters . 7

1.5 Recommended workflow . 7
1.5.1 Clustering of rasters . 7
1.5.2 Clustering of transmission lines . 8

2 Theory 9
2.1 Introduction . 9
2.2 Hierarchical Clustering . 9
2.3 k-means Method . 9
2.4 k-means++ Method . 10
2.5 max-p Method . 10

3 Implementation 11
3.1 initialization.py . 11
3.2 create_subproblems.py . 11
3.3 kmeans_functions.py . 12
3.4 max_p_functions.py . 14
3.5 lines_clustering_functions.py . 16
3.6 spatial_functions.py . 18
3.7 util.py . 20

Python Module Index 23

Index 25

i

ii

Chapter 1

User manual

1.1 Installation

Note: We assume that you are familiar with git and conda.

First, clone the git repository in a directory of your choice using a Command Prompt window:

$ ~\directory-of-my-choice> git clone https://github.com/tum-ens/pyCLARA.git

We recommend using conda and installing the environment from the file geoclustering.yml that you can
find in the repository. In the Command Prompt window, type:

$ cd pyCLARA\env\
$ conda env create -f geoclustering.yml

Then activate the environment:

$ conda activate geoclustering

In the folder code, you will find multiple files:

File Description
config.py used for configuration, see below.
runme.py main file, which will be run later using python runme.py.
lib\initialization.py used for initialization.
lib\create_subproblems.py used to split the clustering problem into smaller subproblems.
lib\kmeans_functions.py includes functions related to the k-means clustering algorithm.
lib\max_p_functions.py includes functions related to the max-p clustering algorithm.
lib\lines_clustering_functions.py includes functions for the hierarchical clustering of transmission lines.
lib\spatial_functions.py contains helping functions for spatial operations.
lib\util.py contains minor helping functions and the necessary python libraries to be imported.

1

https://git-scm.com/downloads
https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html

, Release 1.0.1

1.2 config.py

This file contains the user preferences, the links to the input files, and the paths where the outputs should be saved.
The paths are initialized in a way that follows a particular folder hierarchy. However, you can change the hierarchy
as you wish.

1.2.1 Main configuration function

config.configuration()
This function is the main configuration function that calls all the other modules in the code.

Return (paths, param) The dictionary paths containing all the paths to inputs and outputs, and
the dictionary param containing all the user preferences.

Return type tuple(dict, dict)

config.general_settings()
This function creates and initializes the dictionaries param and paths. It also creates global variables for the
root folder root, and the system-dependent file separator fs.

Return (paths, param) The empty dictionary paths, and the dictionary param including some
general information.

Return type tuple(dict, dict)

Note: Both param and paths will be updated in the code after running the function config.configuration.

Note: root points to the directory that contains all the inputs and outputs. All the paths will be defined relatively
to the root, which is located in a relative position to the current folder.

config.scope_paths_and_parameters(paths, param)
This function assigns a name for the geographic scope, and collects information regarding the input rasters
that will be clustered:

• region_name is the name of the geographic scope, which affects the paths where the results are saved.

• spatial_scope is the path to the geographic scope that will be used to clip the map of transmission
lines. You can ignore it if you are only clustering rasters.

• raster_names are the name tags of the inputs. Preferably, they should not exceed ten (10) characters,
as they will be used as attribute names in the created shapefiles. If the user chooses strings longer than
that, they will be cut to ten characters, and no error is thrown. The name tags are entered as keys into
the dictionary inputs.

• inputs are the paths to the input rasters (strings). They are given as the first element of a values tuple
for each key in the dictionary inputs.

• agg are the aggregation methods for the input data (strings: either 'mean' or 'sum' or
'density'). They are given as the second element of a values tuple for each key in the dictio-
nary inputs.

• weights are the weights of the input data during the clustering (int or float). They are given as the third
element of a values tuple for each key in the dictionary inputs.

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return (paths, param) The updated dictionaries paths and param.

2 Chapter 1. User manual

, Release 1.0.1

Return type tuple(dict, dict)

1.2.2 User preferences

config.computation_parameters(param)
This function sets the limit to the number of processes n_jobs that can be used in k-means clustering.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.kmeans_parameters(param)
This function sets the parameters for the k-means clustering:

• method: Currently, two methods for setting the number of clusters are used. By choosing
'maximum_number', the user sets the total number of clusters for all parts. This number will
be distributed over the parts depending on their size and the standard deviation of their data. If the
user chooses 'reference_part', then the part with the highest product of relative size and stan-
dard deviation (relatively to the maximum) is chosen as a reference part. For this one, the maximum
number of clusters is identified using the Elbow method. The optimum number of clusters for all the
other parts is a function of that number, and of their relative size and standard deviation.

Warning: The 'maximum_number' might be exceeded due to the rounding of the share of each
part.

• ratio_size_to_std: This parameter decides about the weight of the relative size and the relative standard
deviation (relatively to the maximum) in determining the optimal number of clusters for each part. A
ratio of 7:3 means that 70% of the weight is on the relative size of the part, and 30% is on its standard
deviation. Any number greater than zero is accepted.

• reference_part: This is a dictionary that contains the parameters for the Elbow method. Cluster sizes
between min and max with a certain step will be tested in about for-loop, before the optimal number
of clusters for the reference part can be identified. The dictionary is only needed it the method is
'reference_part'.

• maximum_number: This integer sets the maximum number of kmeans clusters for the whole map. It
is only used if the method is 'maximum_number'.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.maxp_parameters(param)
This function sets the parameters for max-p clustering. Currently, one or two iterations of the max-p algo-
rithm can be used, depending on the number of polygons after kmeans.

• maximum_number: This number (positive float or integer) defines the maximum number of clusters
that the max-p algorithm can cluster in one go. For about 1800 polygons, the calculation takes about
8 hours. The problem has a complexity of O(n3) in the Bachmann-Landau notation.

• final_number: This integer defines the number of clusters that the user wishes to obtain at the end.
There is no way to force the algorithm to deliver exactly that number of regions. However, the thresh-
old can be defined as a function of final_number, so that the result will be close to it.

• use_results_of_maxp_parts: This parameter should be set to zero, unless the user has already obtained
results for the first run of the max-p algorithm, and want to skip it and just run the second round. In
that case, the user should set the value at 1.

1.2. config.py 3

, Release 1.0.1

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.raster_cutting_parameters(paths, param)
This function sets how the large input rasters are cut before starting the clustering. There are two options:
the maps are either cut using a shapefile of (multi)polygons, or using rectangular boxes.

• use_shapefile: if 1, a shapefile is used, otherwise rectangular boxes.

• subregions: the path to the shapefile of (multi)polygons that will cut the large raster in smaller parts
(only needed if use_shapefile is 1).

• rows: number of rows of boxes that the raster will be cut into (only needed if use_shapefile is 0).

• cols: number of columns of boxes that the raster will be cut into (only needed if use_shapefile is 0).

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return (paths, param) The updated dictionaries paths and param.

Return type tuple(dict, dict)

config.raster_parameters(param)
This function sets the parameters for the input rasters.

• minimum_valid is the lowest valid value. Below it, the data is considered NaN.

• CRS is the coordinates reference system. It must be the same for all raster input maps.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.transmission_parameters(param)
This function sets the parameters for transmission line clustering.

• CRS_grid: The coordinates reference system of the shapefile of transmission lines, in order to read it
correctly.

• default_cap_MVA: Line capacity in MVA for added lines (to connect electric islands).

• default_line_type: Line type for added lines (to connect electric islands).

• number_clusters: Target number of regions after clustering, to be used as a condition to stop the
algorithm.

• intermediate_number: List of numbers of clusters at which an intermediate shapefile will be saved.
The values affect the path grid_intermediate.

• debugging_number: Number of clusters within an intermediate shapefile, that can be used as an input
(for debugging). It affects the path grid_debugging.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

4 Chapter 1. User manual

, Release 1.0.1

1.2.3 Paths

config.output_folders(paths, param)
This function defines the paths to multiple output folders:

• region is the main output folder. It contains the name of the scope, and the names of the layers used
for clustering (as a subfloder).

• sub_rasters is a subfolder containing the parts of the input rasters after cutting them.

• k_means is a subfolder containing the results of the kmeans clustering (rasters).

• polygons is a subfolder containing the polygonized kmeans clusters.

• parts_max_p is a subfolder containing the results of the first round of max-p (if there is a second
round).

• final_output is a subfolder containing the final shapefile.

• lines_clustering is a subfolder containing the intermediate and final results of the line clustering.

All the folders are created at the beginning of the calculation, if they do not already exist,

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return paths The updated dictionary paths.

Return type dict

config.output_paths(paths, param)
This function defines the paths of some of the files that will be saved:

• input_stats is the path to a CSV file with general information such as the number of parts, the maximal
size and the maximal standard deviation in the parts, and the maximum number of clusters as set by
the user / by the Elbow method.

• non_empty_rasters is the path to a CSV file with information on each subraster (relative size, standard
deviation, etc.).

• kmeans_stats is the path to a CSV file that is only created if the Elbow method is used (i.e. if using a
reference part). It contains statistics for kmeans while applying the Elbow method.

• polygonized_clusters is the path to the shapefile with the polygonized rasters for the whole scope.

• max_p_combined is the path to the shapefile that is generated after a first round of the max-p algorithm
(if there is a second).

• output is the path to the shapefile that is generated at the end, i.e. after running max_p_whole_map in
lib.max_p_functions.py.

For line clustering, the keys start with grid_:

• grid_connected is the path to the shapefile of lines after adding lines to connect island grids.

• grid_clipped is the path to the shapefile of lines after clipping it with the scope.

• grid_voronoi is the path to the shapefile of voronoi polygons made from the points at the start/end of
the lines.

• grid_debugging is the path of an intermediate file during the clustering of regions based on their
connectivity.

• grid_regions is the path to the final result of the clustering (shapefile of regions based on their connec-
tivity).

• grid_bottlenecks is the path to the final result of the clustering (shapefile of transmission line bottle-
necks).

1.2. config.py 5

, Release 1.0.1

Parameters paths (dict) – Dictionary including the paths.

Return paths The updated dictionary paths.

Return type dict

1.3 runme.py

runme.py calls the main functions of the code:

1 from lib.initialization import initialization
2 from lib.create_subproblems import cut_raster
3 from lib.kmeans_functions import *
4 from lib.max_p_functions import *
5 from lib.lines_clustering_functions import *
6 from lib.util import *
7

8 if __name__ == "__main__":
9

10 paths, param = initialization()
11

12 cut_raster(paths, param)
13

14 # k-means functions
15 calculate_stats_for_non_empty_rasters(paths, param)
16 if param["kmeans"]["method"] == "reference_part":
17 choose_ref_part(paths)
18 identify_max_number_of_clusters_in_ref_part(paths, param)
19 k_means_clustering(paths, param)
20 polygonize_after_k_means(paths, param)
21

22 # max-p functions
23 max_p_clustering(paths, param)
24

25 # lines clustering functions
26 lines_clustering(paths, param)

1.4 Recommended input sources

For a list of GIS data sources, check this wikipedia article.

1.4.1 Shapefile of transmission lines

High-voltage power grid data for Europe and North America can be obtained from GridKit, which used Open-
StreetMap as a primary data source.

In this repository, the minimum requirements are a shapefile of lines with the attributes ID, Cap_MVA and Type.
Such a file can be obtained using the repository tum-ens/pyPRIMA to clean the GridKit data.

6 Chapter 1. User manual

https://en.wikipedia.org/wiki/List_of_GIS_data_sources
https://zenodo.org/record/47317

, Release 1.0.1

1.4.2 Shapefile of the region of interest (useful for lines clustering)

The shapefile allows to identify the lines that are inside the scope, and those that lie outside of it. Hence, only
the outer borders of the polygons matter. If you are interested in administrative divisions, you may consider
downloading the shapefiles from the website of the Global Administration Divisions (GADM). You can also
create your own shapefiles using a GIS software.

1.4.3 High resolution rasters

Any raster can be used. If multiple rasters are used, ensure that they have the same resolution, the same projection,
and the same geographic extent. Rasters for renewable potentials can be generated using the GitHub repository
tum-ens/pyGRETA. A high resolution raster (30 arcsec) of population density can be downloaded from the website
of SEDAC after registration. A high resolution raster (15 arcsec = 1/240° longitude and 1/240° latitude) made of
24 tiles can be downloaded from viewfinder panoramas.

1.5 Recommended workflow

The script is designed to be modular and split into four multiple modules: lib.create_subproblems, lib.
kmeans_functions, lib.max_p_functions, and lib.lines_clustering_functions.

Warning: The outputs of some modules serve as inputs to the others (this applies to the first three modules).
Therefore, the user will have to run the script sequentially.

There are two recommended use cases: either the clustering of rasters, or the clustering of transmission lines. The
modules will be presented in the order in which the user will have to run them.

1. Clustering of rasters

a. Creating subproblems

b. k-means clustering

c. max-p functions

2. Clustering of transmission lines

It is recommended to thoroughly read through the configuration file config.py and modify the input paths and
computation parameters before starting the runme.py script. Once the configuration file is set, open the runme.py
file to define what use case you will be using the script for.

1.5.1 Clustering of rasters

The first use case deals with the clustering of high resolution rasters. Depending on the size of the rasters and the
user preferences, all or some of these modules will be used:

1.5. Recommended workflow 7

https://gadm.org/download_country_v3.html
https://github.com/tum-ens/pyGRETA
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download
http://viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org15.htm

, Release 1.0.1

Creating subproblems

Instead of applying the clustering algorithms directly on the original rasters, the module lib.
create_subproblems is called to split the rasters into smaller ones. There are two options: either to split the
rasters into rectangles of similar sizes, or according to polygon shapes provided by the user.

Note: If you would like to cluster data on a European level, but would like to do it for each country separately,
provide a shapefile of European countries to define the subregions.

You can also skip this step altogether and cluster the whole dataset at once (not recommended for very large maps,
because the quality of the results and the speed of the calculation are affected).

k-means clustering

This step is also optional. The purpose is to compress the amount of information so that the max-p algorithm
can be applied. The max-p algorithm can cluster up to ~1800 polygons in about 8h. So the functions inside
the lib.kmeans_functions module have two goals: reduce the number of data points while preserving the
maximum amount of information that can be processed by the next module, and polygonizing the rasters (i.e.
create shapefiles of polygons from clustered rasters).

The user can define the number of clusters k, or let the code decide depending on the standard deviation and the
number of valid data points.

max-p functions

The max-p algorithm is the one that ensures the spatial contiguity of the clustered data points, but due to its
computational complexity, the previous steps might be needed. Also, there is a possibility to run the max-p
algorithm in two steps: first on each subproblem separately, then on the whole geographic scope after combining
the results of the subproblems. If the number of polygons after k-means is manageable in one run, then the max-p
algorithm is applied once. The result is a shapefile of contiguous polygons with similar characteristics.

Note: You can customize the properties, the weights of the data sets, and the aggregating functions to be used
during the clustering, e.g. 20% solar FLH (averaged), 40% wind FLH (averaged), and 40% electricity demand
(summed).

1.5.2 Clustering of transmission lines

This use case is currently independent of the previous one. Starting from the maximum number of regions sur-
rounding each node in the grid, it uses a hierarchical algorithm to merge connected nodes that have a high trans-
mission capacity flowing from/into them and a low area. The algorithm stops when the target number of clusters
is reached.

8 Chapter 1. User manual

Chapter 2

Theory

2.1 Introduction

A number of different algorithms have been developed by scientists for clustering geographic data. The most
trivial and commonly used algorithm is the k-means algorithm but it has some limitations. These limitations urged
the researchers to come up with more novel and sophisticated methods of clustering geographic data. Usually,
the type of algorithm which is used depends on the type of data available and the associated time complexity and
requirements for clustering quality. Furthermore, the clustering algorithms are based on different techniques and
one of these techniques is hierarchical clustering.

2.2 Hierarchical Clustering

A hierarchical clustering algorithm forms a dendrogram which is basically a tree that splits the input data into
small subsets using a recursive approach [1]. The dendrogram can be built using two different approaches which
are “bottom-up” or “top-down” approach. As the name suggests, the bottom-up approach treats each object as a
separate cluster and combines the two “closest” clusters into one. The algorithm continues until all objects are
merged together to form one big object. On the other hand, the top-down approach starts with one big cluster in
which all the objects exist. The big cluster is repeatedly broken down into smaller clusters in each iteration of the
algorithm [1].

2.3 k-means Method

The k-means method is one of the oldest methods that has been used for clustering. In this method, the average
value of data objects in a cluster is used as the cluster center [2]. The steps that the k-means method follows are:

The number of clusters k are chosen. The choice of right k is important as small k can result in clusters in which
distances to centroid are very long whereas a too large k means that the algorithm will take longer to converge with
little to no improvement in average distances. # Each cluster is initialized by either of the two methods namely
Forgy method or Random partition method. For standard k-means algorithm, Forgy method is preferable in which
k random observations are chosen as initial means for the clusters [3]. # This step is known as the assignment step.
A total of k number of clusters are created with each data object being assigned to the nearest mean. The figure
so obtained is known as Voronoi diagram. # The mean of all the data points in each cluster is calculated and the
newly calculated mean serves as the new centroid for each cluster. This step is called the update step. # Step (3)
and (4) are repeated until convergence criteria has been attained. Usually, the convergence is achieved when the
object assignments do not change any more.

Generally, the k-means algorithm has a time complexity equal to O (n2) [4]. Moreover, it is a heuristic method
which means that convergence to a global optimum is not guaranteed. However, as k-means is a relatively fast-
algorithm, it is a common practice to run k-means method of clustering with different starting conditions and
choose the run that has the best results.

9

, Release 1.0.1

2.4 k-means++ Method

The k-means++ clustering algorithm can be thought of as an add-on to the standard k-means clustering algorithm.
The k-means++ algorithm is designed to improve the quality of clusters that are formed as local optimum using
the standard k-means method [4]. Moreover, this method also tends to lower the runtime of the subsequently
used k-means algorithm by making it converge quickly. k-means++ achieves this by choosing “seeds” for k-
means algorithm. The “seeds” are the initial k cluster centers which are chosen based on a certain criteria instead
of randomly choosing the cluster centers as was the case in the standard k-means algorithm. The steps that k-
means++ algorithm follows for initializing the cluster centers are as follows:

Choose one data point at random from the given data set and consider it as the first center c¬i. # Calculate the
distance of each of the data points in the set from the nearest cluster center with D(x) being the distance of each
point. # Choose a new cluster center ci. # Repeat steps (2) and (3) until a k number of centers have been chosen.
Using the initialized centers, proceed with the standard k-means algorithm as outlined in previous section.

Although initializing cluster centers using k-means++ method is computationally expensive, the subsequent k-
means method actually takes less time to converge and as a result, the overall time taken to converge is usually
less as compared to the standard k-means method. Moreover, the k-means++ method is O (log k) competitive
[4]. Furthermore, as mentioned above, the local optimum obtained is much more optimized and therefore, the
k-means++ method is better than the standard k-means method for clustering of data. Fig. 3 [5] shows the results
of a clustering performed on a set of typical data using k-means and k-means++ method. It is clear from the figure
that error is smaller when k-means++ is used for clustering and the convergence time is also almost the same.

2.5 max-p Method

The max-p regions problem has been developed to satisfy spatial contiguity constraints while clustering. As op-
posed to other constraint-based methods, this methods models the total number of sectors as an internal parameter
[6]. Moreover, this approach does not put restrictions on the geometry of regions. In fact, it lets the data sets dic-
tate the shape. The heuristic solution that has been proposed in order to solve the max-p regions problem follows
the following steps.

The first is the construction phase which is subdivided into two more phases. The first sub-phase is named
growing phase in which the algorithm selects an unassigned area at random. This is called the seed area. # The
neighboring regions of seed area are continuously added to the first seed until a threshold is reached. # Then
the algorithm chooses a new seed area and grows a region by following step (2). This step is repeated until no
new seeds which can satisfy the threshold value can be found. # Areas which are not assigned to a region are
called enclaves. Therefore, at the end of growing phase, a set of enclaves and growing regions are formed. #
The number of growing regions and enclaves can change in successive iterations. Solutions in which maximum
growing regions are equal to maximum growing regions in the previous iteration are only kept. # The next step is
the process of enclave assignment and each solution found in previous steps is passed to this step. Each enclave
is assigned to a neighboring region based on similarity. This marks the end of construction phase. # In the next
step i.e. the local search phase, a set of neighboring solutions is obtained by modifying the found solutions and
improving them. Neighboring solutions are created in a way that each solution is feasible. One way to create
neighboring solutions is to move one region to another region [7]. # Finally, a local search algorithm such as
Simulated Annealing, Greedy Algorithm or Tabu Search Algorithm is used to improve the solution.

The main purpose of max-p regions problem and the proposed solution is to aggregate small areas into homoge-
neous regions in a way that the value of a spatially extensive attribute is always more than the threshold value. It
can be useful for clustering rasters in which constraints such as population density, energy per capita need to be
met [6].

10 Chapter 2. Theory

Chapter 3

Implementation

Start with the configuration:

You can run the code by typing:

$ python runme.py

The script runme.py calls the main functions of the code, which are explained in the following sections.

3.1 initialization.py

lib.initialization.initialization()
This function reads the user-defined parameters and paths from config.py, then checks the validity of
the input files. If they are missing or are not rasters, a warning is thrown and the code is exited. The same
applies if the rasters do not have the same resolution or scope.

If the input files are valid, the CSV file in input_stats is generated and filled with the information that is
already available. It will be called by other functions and eventually filled by them.

Returns The updated dictionaries param and paths.

Return type tuple(dict, dict)

3.2 create_subproblems.py

lib.create_subproblems.cut_raster(paths, param)
This function decides, based on the user preference in use_shapefile, whether to call the module
cut_raster_using_shapefile or cut_raster_using_boxes.

Parameters

• paths (dict) – Dictionary of paths to inputs and outputs.

• param (dict) – Dictionary of parameters and user preferences.

Returns The submodules cut_raster_using_shapefile and
cut_raster_using_boxes have their own outputs.

Return type None

lib.create_subproblems.cut_raster_using_boxes(paths, param)
This function cuts the raster file into a m*n boxes with m rows and n columns.

Parameters

11

, Release 1.0.1

• paths (dict) – The paths to the input rasters inputs, to the output raster parts
sub_rasters, and to the CSV file input_stats which will be updated.

• param (dict) – Parameters that include the number of rows and cols, and the
raster_names.

Returns The raster parts are saved as GEOTIFF files, and the CSV file input_stats is updated.

Return type None

lib.create_subproblems.cut_raster_using_shapefile(paths, param)
This function cuts the raster file into parts using the features of a shapefile of (multi)polygons. Each feature
is used as a mask, so that only the pixels lying on it are extracted and saved in a separate raster file.

Parameters

• paths (dict) – The paths to the input rasters inputs, to the shapefile of subregions,
to the output raster parts sub_rasters, and to the CSV file input_stats which will be
updated.

• param (dict) – Parameters that include the array Crd_all, the array res_desired and
the dictionary GeoRef for georeferencing the output rasters, the minimum valid value
minimum_valid, and the raster_names.

Returns The raster parts are saved as GEOTIFF files, and the CSV file input_stats is updated.

Return type None

3.3 kmeans_functions.py

class lib.kmeans_functions.OptimumPoint(init_x, init_y)
This class is used in the Elbow method to identify the maximum distance between the end point and the
start point of the curve of inertia as a function of number of clusters.

lib.kmeans_functions.calculate_stats_for_non_empty_rasters(paths, param)
This function calculates statistics for all non empty subrasters. These statistics include the number of rows
and columns, the size (number of valid points), the standard deviation, the relative size (to the maximum)
and the relative standard deviation, the product of the latter two, and the values of four mapping functions
using the relative size and relative standard deviation.

The product of the relative size and relative standard deviation is used to identify the reference part. As of
the four mapping functions, they are used to identify the four parts that lie in the corners of the cloud of
points, where each point represents a part and is plotted on a graph with the relative size in one axis, and
relative standard deviation on the other.

Parameters

• paths (dict) – Dictionary containing the paths to the folder of inputs, to the CSV
input_stats, to the folder of sub_rasters, and to the output CSV non_empty_rasters.

• param (dict) – Dictionary of parameters containing the raster_names and the mini-
mum valid value in the rasters, minimum_valid.

Returns The results are directly saved in the desired CSV file non_empty_rasters, and the CSV
file input_stats is also updated.

Return type None

lib.kmeans_functions.choose_ref_part(paths)
This function chooses the reference part for the function identify_max_number_of_clusters_in_ref_part.
The reference part is chosen based on the product of relative size and relative standard deviation. The part
with the largest product in all the input files is chosen.

Parameters paths (dict) – The paths to the CSV files non_empty_rasters and input_stats.

Returns The CSV file input_stats is updated.

12 Chapter 3. Implementation

, Release 1.0.1

Return type None

lib.kmeans_functions.identify_max_number_of_clusters_in_ref_part(paths,
param)

This function identifies the maximum number of clusters for the reference part using the Elbow method.
The number of clusters is varied between min and max by step, and in each case, the inertia (distances to
the cluster centers) are calculated. If the slope of the change of the inertia goes below a certain threshold,
the function is interrupted and the maximum number of clusters for the reference part is determined.

Parameters

• paths (dict) – Dictionary containing the paths to the folder of inputs, to the CSV
input_stats, to the folder of sub_rasters, and to the output CSV kmeans_stats.

• param (dict) – Dictionary of parameters containing the raster_names and their
weights, the minimum valid value in the rasters, minimum_valid, kmeans-related pa-
rameters for the iteration of the Elbow method, and the number of processes n_job.

Returns The results are directly saved in the desired CSV file kmeans_stats, and the CSV file
input_stats is also updated.

Return type None

lib.kmeans_functions.identify_opt_number_of_clusters(paths, param, part,
size_of_raster,
std_of_raster)

This function identifies the optimal number of clusters which will be chosen for k-means in each part.

In case you are using a reference part, then the optimal number is a function of the number of clusters in
the reference part, and of the relative size and relative standard deviation, which are weighted according to
ratio_size_to_std.

In case you are using the maximum number for the whole map, then the optimal number in each part
is a function of the total number, of the relative size and relative standard deviation, and the weights in
ratio_size_to_std.

Parameters

• paths (dict) – Dictionary of paths pointing to the location of the input CSV file
non_empty_rasters and to input_stats.

• param (dict) – Dictionary of parameters including the ratio between the relative size
and the relative standard deviation ratio_size_to_std and the method for setting the num-
ber of clusters.

• part (integer) – Counter for the raster parts.

• size_of_raster (integer) – Number of valid data points in the raster part.

• std_of_raster (float) – Standard deviation of the data in the raster part.

Return optimum_no_of_clusters_for_raster Optimum number of clusters for the raster part
according to the chosen method.

Return type integer

lib.kmeans_functions.k_means_clustering(paths, param)
This function does the k-means clustering for every part.

Parameters

• paths (dict) – Dictionary containing the paths to the folder of inputs, to the CSV
input_stats and non_empty_rasters, to the folder of sub_rasters, and to the output folder
kmeans.

• param (dict) – Dictionary of parameters containing the raster_names and their
weights and aggregation methods agg, the minimum valid value in the rasters, mini-
mum_valid, the method for finding the number of kmeans clusters, and the number of
processes n_job.

3.3. kmeans_functions.py 13

, Release 1.0.1

Returns The results are directly saved in the desired CSV file kmeans_stats, and the CSV file
input_stats is also updated.

Return type None

lib.kmeans_functions.polygonize_after_k_means(paths, param)
This function converts the rasters created after k-means clustering into shapefiles of (multi)polygons which
are used in the max-p algorithm.

Parameters

• paths (dict) – Dictionary containing the paths to the folder of kmeans for retrieving
inputs, to the CSV non_empty_rasters, and to the folder polygons for saving outputs.

• param (dict) – Dictionary of parameters containing the minimum valid value in the
rasters, minimum_valid, and the CRS of the shapefiles.

Returns The results are directly saved in the desired paths for each part (folder polygons) and
for the whole map (file polygonized_clusters).

Return type None

3.4 max_p_functions.py

lib.max_p_functions.correct_neighbors_in_shapefile(param, combined_file, exist-
ing_neighbors)

This function finds the neighbors in the shapefile. Somehow, max-p cannot figure out the correct neighbors
and some clusters are physically neighbors but they are not considered as neighbors. This is where this
function comes in.

It creates a small buffer around each polygon. If the enlarged polygons intersect, and the area of the inter-
section exceeds a threshold, then the polygons are considered neighbors, and the dictionary of neighbors is
updated.

Parameters

• param (dict) – The dictionary of parameters including the coordinate reference sys-
tem CRS and the resolution of input rasters res_desired.

• combined_file (str) – The path to the shapefile of polygons to be clustered.

• existing_neighbors (dict) – The dictionary of neighbors as extracted from the
shapefile, before any eventual correction.

Return neighbors_corrected The dictionary of neighbors after correction (equivalent to an ad-
jacency matrix).

Return type dict

lib.max_p_functions.eq_solver(coef, ll_point, ul_point, ur_point)
This function serves as the solver to find coefficient values A, B and C for our defined function which is
used to calculate the threshold.

Parameters

• coef (dict) – The coefficients which are calculated.

• ll_point (tuple(int, int)) – Coordinates of lower left point.

• ul_point (tuple(int, int)) – Coordinates of upper left point.

• ur_point (tuple(int, int)) – Coordinates of upper right point.

Return f Coefficient values for A, B and C in a numpy array. A is f[0], B is f[1] and C is f[2].

Return type numpy array

14 Chapter 3. Implementation

, Release 1.0.1

lib.max_p_functions.get_coefficients(paths)
This function gets the coefficients A, B and C for solving the 3 equations which will lead to the calculation
of the threshold in the max-p algorithm.

Parameters paths (str) – The dictionary of paths including the one to non_empty_rasters.

Return coef The coefficient values for A, B and C returned as a dictionary. The expected struc-
ture is similar to this dictionary: {‘A’: 0.55, ‘B’: 2.91, ‘C’: 0.61}.

Return type dict

lib.max_p_functions.max_p_clustering(paths, param)
This function applies the max-p algorithm to the obtained polygons. Depending on the number of clusters
in the whole map after k-means, it decides whether to run max-p clustering multiple times (for each part,
then for the whole map) or once (for the whole map). If you have already results for each part, you can skip
that by setting use_results_of_max_parts to 1.

Parameters

• paths (dict) – Dictionary of paths pointing to polygonized_clusters and
max_p_combined.

• param (dict) – Dictionary of parameters including max-p related parameters (max-
imum_number and use_results_of_maxp_parts), and eventually the compression_ratio
for the first round of max-p clustering.

Returns The called functions max_p_parts and max_p_whole_map generate outputs.

Return type None

lib.max_p_functions.max_p_parts(paths, param)
This function applies the max-p algorithm on each part. It identifies the neighbors from the shapefile of
polygons for that part. If there are disconnected parts, it assumes that they are neighbors with the closest
polygon.

The max-p algorithm aggregates polygons to a maximum number of regions that fulfil a certain condi-
tion. That condition is formulated as a minimum share of the sum of data values, thr. The threshold
is set differently for each part, so that the largest and most diverse part keeps a large number of poly-
gons, and the smallest and least diverse is aggregated into one region. This is determined by the function
get_coefficients.

After assigning the clusters to the polygons, they are dissolved according to them, and the values of each
property are aggregated according to the aggregation functions of the inputs, saved in agg.

Parameters

• paths (dict) – Dictionary containing the paths to the folder of inputs and polygons,
to the CSV non_empty_rasters, to the output folder parts_max_p and to the output file
max_p_combined.

• param (dict) – Dictionary of parameters containing the raster_names and their
weights and aggregation methods agg, the compression_ratio of the polygonized
kmeans clusters, and the CRS to be used for the shapefiles.

Returns The results of the clustering are shapefiles for each part, saved in the folder
parts_max_p, and a combination of these for the whole map max_p_combined.

Return type None

lib.max_p_functions.max_p_whole_map(paths, param, combined_file)
This function runs the max-p algorithm for the whole map, either on the results obtained from
max_p_parts, or on those obtained from polygonize_after_k_means, depending on the num-
ber of polygons after kmeans clustering.

It identifies the neighbors from the shapefile of polygons. If there are disconnected components (an island of
polygons), it assumes that they are neighbors with the closest polygon. It also verifies that the code identifies
neighbors properly and corrects that eventually using correct_neighbors_in_shapefile.

3.4. max_p_functions.py 15

, Release 1.0.1

The max-p algorithm aggregates polygons to a maximum number of regions that fulfil a certain condition.
That condition is formulated as a minimum share of the sum of data values, thr. The threshold for the
whole map is set as a function of the number of polygons before clustering, and the desired number of
polygons at the end. However, that number may not be matched exactly. The user may wish to adjust
the threshold manually until the desired number is reached (increase the threshold to reduce the number of
regions, and vice versa).

After assigning the clusters to the polygons, they are dissolved according to them, and the values of each
property are aggregated according to the aggregation functions of the inputs, saved in agg.

Parameters

• paths (dict) – Dictionary containing the paths to the folder of inputs and to the
output file output.

• param (dict) – Dictionary of parameters containing the raster_names and their
weights and aggregation methods agg, the desired number of features at the end fi-
nal_number, and the CRS to be used for the shapefiles.

• combined_file (str) – Path to the shapefile to use as input. It is
either the result obtained from max_p_parts, or the one obtained from
polygonize_after_k_means.

Returns The result of the clustering is one shapefile for the whole map saved directly in output.

Return type None

For the hierarchical clustering of the transmission network, use the following script:

3.5 lines_clustering_functions.py

lib.lines_clustering_functions.clip_transmission_shapefile(paths, param)
This function clips the shapefile of the transmission lines using the shapefile of the scope. MULTI-
LINESTRING instances are formed as a result of clipping. Hence, the script cleans the clipped transmission
file by replacing the MULTILINESTRING instances with LINESTRING instances.

Parameters

• paths (dict) – Dictionary of paths including the path to the shapefile of the transmis-
sion network after connecting islands, grid_connected, and to the output grid_clipped.

• param – Dictionary of parameters including CRS_grid.

Returns The shapefile of clipped transmission lines is saved directly in the desired path
grid_clipped.

Return type None

lib.lines_clustering_functions.cluster_transmission_shapefile(paths,
param)

This function clusters the transmission network into a specified number of clusters. It first reads the shapefile
of voronoi polygons, and initializes its attributes elec_neighbors, trans_lines, Area, Cap, and Ratio. Starting
with the polygon with the highest ratio, it merges it with its electric neighbors with the highest ratio as well.
It then updates the values and repeats the algorithm, until the target number of clusters is reached.

Parameters

• paths (dict) – Dictionary of paths pointing to grid_clipped, grid_debugging,
grid_voronoi, and to the outputs grid_intermediate and grid_regions.

• param (dict) – Dictionary containing the parameter CRS_grid and the user prefer-
ences number_clusters and intermediate_number.

Returns The intermediate and final outputs are saved directly in the desired shapefiles.

Return type None

16 Chapter 3. Implementation

, Release 1.0.1

lib.lines_clustering_functions.connect_islands(paths, param)
This script takes a shapefile of a transmission network and uses graph theory to identify its components
(electric islands). After the identification of islands, it creates connections between them using additional
transmission lines with low capacities. This correction assumes that there are actually no electric islands,
and that multiple graph components only exist because some transmission lines are missing in the data. The
output is a shapefile of transmission lines with no electric islands.

Parameters

• paths (dict) – Dictionary of paths including the path to the input shapefile of the
transmission network, grid_input.

• param – Dictionary of parameters including CRS_grid, default_cap_MVA, and de-
fault_line_type.

Returns The shapefile with connections between islands is saved directly in the desired path
grid_connected.

Return type None

lib.lines_clustering_functions.create_voronoi_polygons(paths, param)
This function creates a shapefile of voronoi polygons based on the points at the start/end of the lines.

Parameters

• paths (dict) – Dictionary of paths including the path to the shapefile of the transmis-
sion network after clipping, grid_clipped, to the scope spatial_scope, and to the output
grid_voronoi.

• param – Dictionary of parameters including CRS_grid.

Returns The shapefile of voronoi polygons is saved directly in the desired path grid_voronoi.

Return type None

lib.lines_clustering_functions.lines_clustering(paths, param)
This function applies the hierarchical clustering algorithm to the shapefile of transmission lines. It first
ensures that the whole grid is one component (no electric islands), by eventually adding fake lines with
low capacity. Then it clips the grid to the scope, and creates a shapefile of voronoi polygons based on the
points at the start/end of the lines. Regions with a small area and high connectivity to their neighbors are
aggregated together, until the target number of regions is reached.

Parameters

• paths (dict) – Dictionary of paths pointing to input files and output locations.

• param (dict) – Dictionary of parameters including transmission-line-related param-
eters.

Returns The called functions connect_islands, clip_transmission_shapefile,
create_voronoi_polygons, and cluster_transmission_shapefile gen-
erate outputs.

Return type None

lib.lines_clustering_functions.update_values_in_geodataframes(gdf_trans,
gdf_voronoi,
poly1, poly2,
cluster_no)

This function updates the values in the geodataframes gdf_trans and gdf_voronoi after dissolving the poly-
gons and is called in the loops in cluster_transmission_shapefile.

Parameters

• gdf_trans (geopandas GeoDataFrame) – Geodataframe of transmission lines,
containing the columns Start_poly and End_poly.

• gdf_voronoi (geopandas GeoDataFrame) – Geodataframe of polygons, con-
taining the columns trans_lines, elec_neighbors, Cluster, Cap, Area, and Ratio.

3.5. lines_clustering_functions.py 17

, Release 1.0.1

• poly1 (geopandas GeoDataFrame) – First polygon to be dissolved, containing
the same columns as gdf_voronoi.

• poly2 (geopandas GeoDataFrame) – Second polygon to be dissolved, contain-
ing the same columns as gdf_voronoi.

• cluster_no (integer) – Cluster number to be used for the dissolved polygons.

Return (gdf_trans, gdf_voronoi) Updated geodataframes after dissolving poly1 and poly2.

Return type tuple of geodataframes

Helping functions for the models are included in spatial_functions.py, and util.py.

3.6 spatial_functions.py

lib.spatial_functions.array2raster(newRasterfn, array, rasterOrigin, param)
This function saves array to geotiff raster format (used in cutting with shapefiles).

Parameters

• newRasterfn (string) – Output path of the raster.

• array (numpy array) – Array to be converted into a raster.

• rasterOrigin (list of two floats) – Latitude and longitude of the North-
western corner of the raster.

• param (dict) – Dictionary of parameters including GeoRef and CRS.

Returns The raster file will be saved in the desired path newRasterfn.

Return type None

lib.spatial_functions.array_to_raster(array, destination_file, input_raster_file)
This function changes from array back to raster (used after kmeans algorithm).

Parameters

• array (numpy array) – The array which needs to be converted into a raster.

• destination_file (string) – The file name where the created raster file is
saved.

• input_raster_file (string) – The original input raster file from which the
original coordinates are taken to convert the array back to raster.

Returns The raster file will be saved in the desired path destination_file.

Return type None

lib.spatial_functions.assign_disconnected_components_to_nearest_neighbor(data,
w)

This loop is used to force any disconnected group of polygons (graph component) to be assigned to the
nearest neighbors.

Parameters

• data (geodataframe) – The geodataframe of polygons to be clustered.

• w (pysal weights object) – The pysal weights object of the graph (w.
neighbors is similar to an adjacency matrix).

Return w The updated pysal weights objected is returned.

Return type pysal weights object

lib.spatial_functions.calc_geotiff(Crd_all, res_desired)
This function returns a dictionary containing the georeferencing parameters for geotiff creation, based on
the desired extent and resolution.

18 Chapter 3. Implementation

, Release 1.0.1

Parameters

• Crd_all (numpy array) – Coordinates of the bounding box of the spatial scope.

• res_desired (list) – Desired data resolution in the vertical and horizontal dimen-
sions.

Return GeoRef Georeference dictionary containing RasterOrigin, RasterOrigin_alt, pixel-
Width, and pixelHeight.

Return type dict

lib.spatial_functions.calc_region(region, Crd_reg, res_desired, GeoRef)
This function reads the region geometry, and returns a masking raster equal to 1 for pixels within and 0
outside of the region.

Parameters

• region (Geopandas series) – Region geometry

• Crd_reg (list) – Coordinates of the region

• res_desired (list) – Desired high resolution of the output raster

• GeoRef (dict) – Georeference dictionary containing RasterOrigin, RasterOrigin_alt,
pixelWidth, and pixelHeight.

Return A_region Masking raster of the region.

Return type numpy array

lib.spatial_functions.ckd_nearest(gdf_a, gdf_b, bcol)
This function finds the distance and the nearest points in gdf_b for every point in gdf_a.

Parameters

• gdf_a (geodataframe) – GeoDataFrame of points, forming a component that is
disconnected from gdf_b.

• gdf_b (geodataframe) – GeoDataFrame of points, forming a component that is
disconnected from gdf_a.

• bcol (string) – Name of column that should be listed in the resulting DataFrame.

Return df Dataframe with the combinations of pair of points as rows, and 'distance' and
'bcol' as columns.

Return type pandas dataframe

lib.spatial_functions.crd_bounding_box(Crd_regions, resolution)
This function calculates coordinates of the bounding box covering data in a given resolution.

Parameters

• Crd_regions (numpy array) – Coordinates of the bounding boxes of the regions.

• resolution (numpy array) – Data resolution.

Return Crd Coordinates of the bounding box covering the data for each region.

Return type numpy array

lib.spatial_functions.ind_from_crd(Crd, Crd_all, res)
This function converts longitude and latitude coordinates into indices within the spatial scope of the data.

Parameters

• Crd (numpy array) – Coordinates to be converted into indices.

• Crd_all (numpy array) – Coordinates of the bounding box of the spatial scope.

• res (list) – Resolution of the data, for which the indices are produced.

Return Ind Indices within the spatial scope of data.

3.6. spatial_functions.py 19

, Release 1.0.1

Return type numpy array

lib.spatial_functions.polygonize_raster(input_file, output_shapefile, column_name)
This function is used to change from a raster to polygons as max-p algorithm only works with polygons.

Parameters

• input_file (string) – The path to the file which needs to be converted to a poly-
gon from a raster.

• output_shapefile (string) – The path to the shapefile which is generated after
polygonization.

• column_name (string) – The column name, the values from which are used for
conversion.

Returns The shapefile of (multi)polygons is saved directly in the desired path output_shapefile.

Return type None

3.7 util.py

lib.util.create_json(filepath, param, param_keys, paths, paths_keys)
Creates a metadata JSON file containing information about the file in filepath by storing the relevant keys
from both the param and path dictionaries.

Parameters

• filepath (string) – Path to the file for which the JSON file will be created.

• param (dict) – Dictionary of dictionaries containing the user input parameters and
intermediate outputs.

• param_keys (list of strings) – Keys of the parameters to be extracted from
the param dictionary and saved into the JSON file.

• paths (dict) – Dictionary of dictionaries containing the paths for all files.

• paths_keys (list of strings) – Keys of the paths to be extracted from the
paths dictionary and saved into the JSON file.

Returns The JSON file will be saved in the desired path filepath.

Return type None

lib.util.display_progress(message, progress_stat)
This function displays a progress bar for long computations. To be used as part of a loop or with multipro-
cessing.

Parameters

• message (string) – Message to be displayed with the progress bar.

• progress_stat (tuple(int, int)) – Tuple containing the total length of the
calculation and the current status or progress.

Returns The status bar is printed.

Return type None

lib.util.get_x_y_values(paths)
This function finds the rel_size and rel_std of the four corners of the x,y scatter plot between rel_size and
rel_std.

Parameters paths (dict) – Dictionary of paths including the path to the CSV file
non_empty_rasters.

20 Chapter 3. Implementation

, Release 1.0.1

Returns Coordinates of the upper left, upper right, lower left and lower right points of the x,y
scatter plot between rel_size and rel_std.

Return type tuple(tuples(int, int))

lib.util.timecheck(*args)
This function prints information about the progress of the script by displaying the function currently running,
and optionally an input message, with a corresponding timestamp. If more than one argument is passed to
the function, it will raise an exception.

Parameters args (string) – Message to be displayed with the function name and the times-
tamp (optional).

Returns The time stamp is printed.

Return type None

Raise Too many arguments have been passed to the function, the maximum is only one string.

3.7. util.py 21

, Release 1.0.1

22 Chapter 3. Implementation

Python Module Index

c
config, 2

l
lib.create_subproblems, 11
lib.initialization, 11
lib.kmeans_functions, 12
lib.lines_clustering_functions, 16
lib.max_p_functions, 14
lib.spatial_functions, 18
lib.util, 20

23

, Release 1.0.1

24 Python Module Index

Index

A
array2raster() (in module lib.spatial_functions),

18
array_to_raster() (in module

lib.spatial_functions), 18
assign_disconnected_components_to_nearest_neighbor()

(in module lib.spatial_functions), 18

C
calc_geotiff() (in module lib.spatial_functions),

18
calc_region() (in module lib.spatial_functions),

19
calculate_stats_for_non_empty_rasters()

(in module lib.kmeans_functions), 12
choose_ref_part() (in module

lib.kmeans_functions), 12
ckd_nearest() (in module lib.spatial_functions),

19
clip_transmission_shapefile() (in module

lib.lines_clustering_functions), 16
cluster_transmission_shapefile() (in

module lib.lines_clustering_functions), 16
config

module, 2
configuration() (in module config), 2
connect_islands() (in module

lib.lines_clustering_functions), 16
correct_neighbors_in_shapefile() (in

module lib.max_p_functions), 14
crd_bounding_box() (in module

lib.spatial_functions), 19
create_json() (in module lib.util), 20
create_voronoi_polygons() (in module

lib.lines_clustering_functions), 17
cut_raster() (in module lib.create_subproblems),

11
cut_raster_using_boxes() (in module

lib.create_subproblems), 11
cut_raster_using_shapefile() (in module

lib.create_subproblems), 12

D
display_progress() (in module lib.util), 20

E
eq_solver() (in module lib.max_p_functions), 14

G
general_settings() (in module config), 2
get_coefficients() (in module

lib.max_p_functions), 14
get_x_y_values() (in module lib.util), 20

I
identify_max_number_of_clusters_in_ref_part()

(in module lib.kmeans_functions), 13
identify_opt_number_of_clusters() (in

module lib.kmeans_functions), 13
ind_from_crd() (in module lib.spatial_functions),

19
initialization() (in module lib.initialization),

11

K
k_means_clustering() (in module

lib.kmeans_functions), 13

L
lib.create_subproblems

module, 11
lib.initialization

module, 11
lib.kmeans_functions

module, 12
lib.lines_clustering_functions

module, 16
lib.max_p_functions

module, 14
lib.spatial_functions

module, 18
lib.util

module, 20
lines_clustering() (in module

lib.lines_clustering_functions), 17

M
max_p_clustering() (in module

lib.max_p_functions), 15
max_p_parts() (in module lib.max_p_functions),

15
max_p_whole_map() (in module

lib.max_p_functions), 15
module

config, 2
lib.create_subproblems, 11
lib.initialization, 11

25

, Release 1.0.1

lib.kmeans_functions, 12
lib.lines_clustering_functions, 16
lib.max_p_functions, 14
lib.spatial_functions, 18
lib.util, 20

O
OptimumPoint (class in lib.kmeans_functions), 12

P
polygonize_after_k_means() (in module

lib.kmeans_functions), 14
polygonize_raster() (in module

lib.spatial_functions), 20

T
timecheck() (in module lib.util), 21

U
update_values_in_geodataframes() (in

module lib.lines_clustering_functions), 17

26 Index

	User manual
	Installation
	config.py
	Main configuration function
	User preferences
	Paths

	runme.py
	Recommended input sources
	Shapefile of transmission lines
	Shapefile of the region of interest (useful for lines clustering)
	High resolution rasters

	Recommended workflow
	Clustering of rasters
	Clustering of transmission lines

	Theory
	Introduction
	Hierarchical Clustering
	k-means Method
	k-means++ Method
	max-p Method

	Implementation
	initialization.py
	create_subproblems.py
	kmeans_functions.py
	max_p_functions.py
	lines_clustering_functions.py
	spatial_functions.py
	util.py

	Python Module Index
	Index

